# I `+-*/`

Here are some nice functions which let you perform tasks with non-integers with **infinite precision**.

```
def sub_frac(num1, den1, num2, den2):
"""Subtracts two fractions."""
common_den = math.lcm(den1, den2)
num1 *= common_den/den1
num2 *= common_den/den2
num = num1 - num2
return num, common_den
def simplify(num, den):
neg = -1 if num * den < 0 else 1
if neg:
num, den = abs(num), abs(den)
factor = gcd(num, den)
return (num//factor *neg, den//factor)
def factor_sqrt(num, factors=[]):
#print(num, factors)
for i in range(2, math.floor(math.sqrt(num))+2): #theoretically we only need 1 but lets give it 2 just incase.
if (i%2 == 0 and i>2) or (i%3 == 0 and i>3):
continue
if num % (i**2) == 0:
factors = factors + [i]
#print(num, i, num//(i**2), factors)
return factor_sqrt(num//(i**2), factors)
return math.prod(factors), num
def frac(num, den):
num = int(num)
den = int(den)
if num < 0 and den < 0:
num = abs(num)
den = abs(den)
if num == 1 and den == 0:
num = "[INF]"
den = 1
if den != 1:
return f"{num}/{den}"
return f"{num}"
```

You can find more in my parallel line distance calculator.